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The subject of the present study is the Monte Carlo path-integral evaluation of the moments of spectral
functions. Such moments can be computed by formal differentiation of certain estimating functionals that are
infinitely differentiable against time whenever the potential function is arbitrarily smooth. Here, I demonstrate
that the numerical differentiation of the estimating functionals can be more successfully implemented by means
of pseudospectral methods �e.g., exact differentiation of a Chebyshev polynomial interpolant�, which utilize
information from the entire interval �−�� /2 ,�� /2�. The algorithmic detail that leads to robust numerical
approximations is the fact that the path-integral action and not the actual estimating functional are interpolated.
Although the resulting approximation to the estimating functional is nonlinear, the derivatives can be computed
from it in a fast and stable way by contour integration in the complex plane, with the help of the Cauchy
integral formula �e.g., by Lyness’ method�. An interesting aspect of the present development is that Hamburg-
er’s conditions for a finite sequence of numbers to be a moment sequence provide the necessary and sufficient
criteria for the computed data to be compatible with the existence of an inversion algorithm. Finally, the issue
of appearance of the sign problem in the computation of moments, albeit in a milder form than for other
quantities, is addressed.
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I. INTRODUCTION

Perhaps one of the most outstanding insufficiencies of the
path-integral formulation of quantum mechanics is that it
does not lead directly to efficient algorithms for the compu-
tation of dynamical information. In contrast, statistical quan-
tities or imaginary-time data are relatively easy to evaluate
and the mechanisms to do so are well understood �1–3�. In
principle, it is possible to relate the quantum correlation
functions in real time to their imaginary-time counterparts by
analytical continuation �4,5�. However, such attempts lead to
inverse problems which, albeit uniquely determined, are fun-
damentally ill-posed. An example is represented by the real
inverse Laplace transform �5�, a technique that has been ex-
tensively utilized as a link between the real and imaginary-
time worlds. It requires the resolution of a linear integral
equation that becomes extremely ill-conditioned upon dis-
cretization. The treatment of such problems is the domain of
regularization theory, which attempts to stabilize the result-
ing equations by controlling certain properties of their solu-
tion.

Notwithstanding earlier attempts that were more or less in
tone with Tikhonov’s least-square approach �6–8�, the pio-
neering research of Gubernatis, Jarrell, Silver, and Sivia �9�
has spearheaded the application of methods of Bayesian sta-
tistical inference with entropic priors �5,9� as a regularization
technique for the inversion of the Laplace transform. To give
a few examples, although somewhat restricted to the direct
research interests of the present author, such methods have
been successfully applied for the computation of various
physical properties such as spectra �10–13�, quantum rates of

reaction �14,15�, and diffusion constants �16�. When we say
“successfully,” we take into account the fact that, in most
cases, there are virtually no computationally feasible alterna-
tives: the techniques based on imaginary-time data are ame-
nable to direct Monte Carlo path-integral treatments and ex-
hibit little degradation of their stability with the increase in
the physical dimensionality. This is so because the stability is
related to the properties of the spectral function �a one-
dimensional probability distribution� and not to the dimen-
sionality of the physical system.

Nevertheless, as Jarrell and Gubernatis point out �5�, “to
solve an ill-posed problem, nothing beats good data.” The
present paper does not attempt to improve on previous re-
sults regarding the stabilization of the inverse problems.
Rather, its purpose is to provide a means to obtain high-
quality input data for the reconstruction of various autocor-
relation functions for physical systems in the continuum
space. A recent study of the present author �17� suggests that
one way to achieve better results is to break the inverse
Laplace problem into two separate steps: computation of mo-
ments by differencing an estimating functional �which is re-
lated to the imaginary-time correlation function� followed by
resolution of the ensuing symmetric Hamburger moment
problem. Both steps are exponentially unstable, albeit to a
lesser degree than the original problem. Very likely, their
combined effect is a problem that is as ill-conditioned as the
original one. Quite clearly, we cannot create new information
in a stable and consistent manner just by manipulating the
data. Is there any gain in the new approach?

The reason we shy away from exponentially unstable al-
gorithms is that they require the utilization of exponentially
fast algorithms �polynomial in the number of digits� for the
computation of the input data. Unfortunately, most of the
algorithms we posses converge polynomially in the best cir-
cumstances and there are only a few instances of exponen-*Electronic address: cpredescu@comcast.net
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tially fast algorithms. Some of the more interesting examples
are related to the execution time of elementary functions on
a classical computer, in arbitrary precision. In fact, Brent
�18� has shown that the evaluation of elementary functions
can be performed in time proportional to
O(n log10�n�2 log10 log10�n�) with respect to the number of
digits n. Therefore, as Ref. �17� argues, differencing an arbi-
trarily smooth estimating functional is a computationally fea-
sible approach whenever empirical potentials are utilized.
The present author has obtained excellent results in unpub-
lished tests that have employed Amber force fields �19� and
Bailey’s arbitrary precision package MPFUN90 �20�.

However, such a technique cannot be applied for poten-
tials that are the result of a computation performed in poly-
nomial time. In addition, there is some unease related to the
mere requirement of arbitrary precision. In most circum-
stances, we are interested in learning the properties of the
spectral function in the low-frequency region �for some
transport phenomena, we are interested in the value at the
origin of the spectral function associated with the flux-flux
�14,15� or velocity-velocity �16� correlation functions�. Due
to quantum and thermal smoothing, the low-frequency por-
tion of the spectral function is largely insensitive to the pre-
cision with which the potential is known. Clearly, whether
we use an otherwise smooth potential with 7 �single preci-
sion� or 15 �double precision� significant digits, we do not
expect the value of a diffusion coefficient to change dramati-
cally and this expectation is justified in many cases by results
of perturbation theory. It follows that the instability of the
differencing step is a property of the algorithm and not nec-
essarily an inner characteristic of the problem.

In Sec. IV, we show that the instability associated with the
differencing step can be removed by interpolation of the ac-
tion. That is, the path-integral action, regarded as a function
of the imaginary time on the interval �−�� /2 ,�� /2�, is re-
placed by a smooth interpolant constructed by means of
trigonometric or Chebyshev polynomials. For infinitely dif-
ferentiable potentials, the interpolant converges faster than
any polynomial and it rapidly feels the discontinuities due to
the finite precision in the computation of the action. How-
ever, if it is known that the potential is smooth, one can
utilize a low-degree interpolant only. By the arguments in the
preceding section, the properties of the spectral functions in
the low-frequency region and, therefore, the values of the
low-order moments are not sensitive to the errors in the ac-
tion. Despite the fact that the interpolated action may not
necessarily come from a perturbed potential, the numerical
results of Sec. V suggest that the computed Monte Carlo data
still represent a sequence of moments, even for low-order
interpolants.

We commence this paper, however, with Sec. II, where
we present a short review of the moment problem and dis-
cuss its relevance for the reconstruction of spectral functions.
In Sec. III, benefitting from the existence of certain math-
ematical results concerning the Hamburger moment problem,
we give necessary and sufficient criteria for inversion algo-
rithms to exist. These criteria can be utilized as an a poste-
riori verification tool for the computed data and they reveal
the exponential extent of the instability of the moment prob-
lem. Nevertheless, this instability has to be weighted against

the fact that the information furnished even by a few tens of
moments is, in general, quite substantial. In Sec. VI, we re-
view the main findings of the present work and enumerate
several research issues left outstanding.

II. THE INVERSE PROBLEM AND THE POSITIVITY
REQUIREMENT FOR THE SPECTRAL FUNCTION

The dynamical quantity we want to evaluate is a quantum
correlation function of the type �21�

CO,��t� = tr�e−��/2+�+it/��HO†e−��/2−�−it/��HO� . �1�

The operator H stands for the Hamiltonian of the system, a
self-adjoint and bounded from the below operator, whereas
t�R and �=1/ �kBT��0 are the real time and the inverse
temperature, respectively. O† denotes the adjoint of the op-
erator O. The parameter � may take values in the interval
�−� /2 ,� /2�. The values of the correlation functions for �
= ±� /2 can be recovered as the corresponding limits, by
continuity arguments. Many quantities of physical interest
are related to the quantum correlation function defined by
�=� /2. However, the correlation functions defined by the
parameter � are related to each other by simple identities in
the Fourier space.

Let us consider the associated spectral functions, which
are defined by the Fourier transforms

C̄O,���� =
1

2�
�

R
e−i�tCO,��t�dt . �2�

With the help of the identity

e−�cH = �
R

e−�cE�E��E�dE , �3�

which is valid for all complex �c with Re��c��0, one com-
putes

C̄O,���� = �
R
�

R
e−��/2−��E−��/2+��E�	�E�O�E��	2

	 
 1

2�
�

R
eit�−�+�E−E��/��dt�dE dE�.

Simple manipulations by means of the Fourier representation
of the delta function show that

C̄O,���� = �e−��/2−�����
R

e−�E	�E + ���O�E�	2dE . �4�

Therefore, the Fourier transforms of the correlation functions
are non-negative distributions �in fact, they are thermal av-
erages of certain power spectra�. If we denote the special

value for �=0 by ḠO���, then we have the relationship

C̄O,���� = e���ḠO��� , �5�

which shows that all correlation functions defined by Eq. �1�
carry essentially the same information. It is not difficult to

see that the spectral function ḠO��� is symmetrical about the
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origin and we shall refer to the corresponding correlation
function as the thermally symmetrized correlation function.

Berne and Harp �22� have pointed out that the computa-
tion of thermally symmetrized quantum correlation functions

GO�t� = tr�e−�cHO†e−�cHO� , �6�

with �c=� /2− it /� and �c=� /2+ it /�, might be an easier
computational task. Certain quantities of physical interest,
such as rates of reaction or diffusion constants, only depend
on the value at the origin of the spectral functions, a value
that is independent of the particular choice of �. Miller,
Schwartz, and Tromp �23� have utilized this independence to
point out that the thermally symmetrized flux-flux correlation
function has better mathematical properties than the Yama-
moto flux-flux correlation function �24�, which corresponds
to an average over � on the interval �−� /2 ,� /2�. More re-
cently, Predescu and Miller �25� have argued that the ther-
mally symmetrized spectral function is the one for which the
moments �and, in general, any short-time information� are
the most sensitive with respect to changes in the values of
the spectral function near the origin. In other words, for this
particular choice of correlation function, the values of the
spectral function near the origin are expected to have the best
continuity properties with respect to variations in the mo-
ments.

From Eq. �1� and the inverse Fourier transform for Eq.
�2�, it follows that

GO�it� = CO,−t/��0� = �
R

C̄O,−t/����d� ,

an equality that holds provided that t� �−�� /2 ,�� /2�. On
the other hand, from Eq. �5�, we obtain the Laplace identity

GO�it� = �
R

e−t�ḠO���d� , �7�

the inverse of which is the thermally symmetrized spectral
function.

Having reached this point in our presentation, we pause
and ask whether or not Eq. �7� uniquely determines the spec-
tral function. The answer is affirmative and follows from
different arguments, all of which are based on the fact that
the spectral function is positive. Thus, one could follow the
path of Baym and Mermin �4� and use positivity to argue that
the integrand of Eq. �7� is absolutely integrable. In turn, this
implies that the correlation function GO�t� must be analytic
in the complex plane on the strip defined by �Im�t��
�� /2.
Standard results of complex analysis then show that GO�t�
for real t and, therefore, ḠO��� are uniquely determined by
the values of GO�it� on the interval �−�� /2 ,�� /2�. The ab-

solute integrability of e−t�ḠO��� plays an important role in
the proof of uniqueness and it should not be taken easy.
Indeed, if the integral in Eq. �7� is only required to converge
in the Cauchy principal value sense, then there exist an in-
finity of solutions, of which only one is positive �nonpositive
examples are furnished by the Fourier transforms of Eq.
�11��. The issue is relevant because both absolute integrabil-
ity and analyticity are constraints on the set of admissible

solutions that are very difficult to implement on a computer.
By comparison, enforcement of positivity is a more achiev-
able goal.

If we also use the a priori information that GO�it� and

ḠO��� are symmetric, the problem that must by solved in the
context of the inverse Laplace transform method is find the

positive and symmetric distribution ḠO��� that satisfies the
equation

GO�it� = �
R

cosh��t�ḠO���d� , �8�

for all t� �0,�� /2�. The input data for this problem is usu-
ally a finite sequence of values of the imaginary-time corre-
lation function on an equally-spaced grid �tn,j = j�� / �2n�: n
�1,0� j
n
. Upon discretization, the functional equation
exhibits multiple solutions and becomes determinate only
upon the specification of an inversion algorithm. The main
problem a computational physicist has to face is that the
original functional equation is ill-posed in the sense of Had-
amard. Although the problem has a unique solution, this so-
lution lacks continuity with the input data for virtually any
computationally reasonable topology. For example, there are
sequences of functions f��t� with �f��t�−GO�it�� / �GO�it��
�
for all t� �0,�� /2�, such that the problem

f��t� = �
R

cosh��t�ḠO���d� , �9�

has no solutions for any �. Thus, just by mere control of the
relative errors in the input data, we are not even guaranteed
an inversion algorithm, much less a sequence of approxima-

tions to the spectral function that converges to ḠO��� as �
→0.

Another approach to proving the uniqueness of the solu-
tion of the inverse Laplace transform is via moments �17�.
First, one utilizes the positivity of the spectral function to
demonstrate that the Taylor series of the correlation function
GO�t� about the origin has a convergence radius equal to or
larger than �� /2. The sequence of even derivatives of the
imaginary-time correlation function at the origin reads

D2k = �d2kGO�it�
dt2k �

t=0
= �

R
ḠO����2kd� . �10�

The odd moments are zero, by the symmetry of the spectral
function. The ensuing symmetric Hamburger moment prob-
lem is then demonstrated to be uniquely determined, thus
both proving the uniqueness of the reconstructed spectral
function and suggesting an alternative computational ap-
proach. Unfortunately, the inverse moment problem also
lacks continuity with the input data. Thus, just by controlling
the relative errors for the moments, we are not guaranteed
that an inversion algorithm exists. Moreover, the finite mo-
ment problem may also be undeterminate. If determinate, the
finite moment problem is exponentially unstable. These sta-
bility issues will be addressed in the following section.

We conclude this section by emphasizing again the re-
quirement of positivity for the reconstructed spectral func-
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tion. For any spectral function ḠO���, there are modifica-
tions that satisfy both the full moment problem given by Eq.
�10� and the Laplace equation given by Eq. �8�, precisely for
the same input data as the physical spectral function. Such
modifications can be obtained by adding some integrable and
infinitely differentiable function that vanishes within the in-
terval �−�� /2 ,�� /2� to the correlation function and then
taking the Fourier transform. A specific example of a func-
tion that satisfies both the full moment problem and the
Laplace equation is provided by the Fourier transform of

GO
�
��t� = GO�t��1, if �t� � ��/2,

1 + exp
 


1 − 2�t�/����� , otherwise, �
�11�

for any arbitrary and positive parameter 
. Such a Fourier
transform always has a nonvanishing negative part. Of
course, in agreement with Baym and Mermin’s analyticity
argument, the modification to the correlation function ex-
pressed by Eq. �11� is not analytical. Nevertheless, there is
no effective procedure to enforce analyticity numerically and
the positivity of the spectral function comes in handy. We
stress that this positivity must be enforced to machine accu-
racy: for many modifications, the negative part of the modi-
fied spectral function appears in the high-frequency region
and can be a very small number, difficult to recognize on a
plot, even if the correlation functions are “obviously” differ-
ent. This is just another manifestation of the instability of the
inverse problems.

III. STABILITY OF THE INVERSE FINITE MOMENT
PROBLEM AND VERIFICATION OF THE MOMENT DATA

We begin this section with a short review of the Ham-
burger moment problem. All mathematical information con-
tained in the present section can be found in standard refer-
ences on the moment problem �26�. A sequence of numbers
D0 ,D1 , . . ., is called a moment sequence if there exists a

non-negative distribution, say ḠO���, such that

Dk = �
R

ḠO����kd� . �12�

Quite clearly, not all sequences of numbers are moment se-
quences. For example, any moment of even order must be a
non-negative number. Even more, by the non-negativity of

the distribution ḠO���, we also have

�
j,k=1

n

Dj+kajak = �
R

ḠO�����
j=0

n

aj�
j�2

d� � 0 �13�

for all sets of number a0 ,a1 , . . . ,an. In the matrix language,
the last inequality is equivalent to the condition that the
Gram matrices

�n� =�
D0 D1 D2 ¯ Dn

D1 D2 D3 ¯ Dn+1

D2 D3 D4 ¯ Dn+2

] ] ] � ]

Dn Dn+1 Dn+2 ¯ D2n

� �14�

are positive semidefinite �that is, their lowest eigenvalues
must be greater or equal to zero�. A standard result from
matrix analysis says that the Hermitian matrix �n�, is positive
semidefinite if and only if all determinants ��k�� with 0�k
�n are non-negative. Therefore, a necessary condition for a
sequence of numbers to be a moment sequence is that the
matrices �n� are positive semidefinite for all n�0 or that the
determinants ��n�� are non-negative for all n�0. Hamburger
has demonstrated that these conditions are also sufficient for
a sequence of numbers to be a moment sequence. In addi-
tion, he has shown that, given a finite sequence
D0 ,D1 , . . . ,D2n, the positive semidefiniteness of �n� is suffi-
cient for the finite moment problem to have at least a solu-
tion �obviously, such a solution is rarely unique�. If the quan-
tities D1 ,D3 , . . . ,D2n−1 are zero, then there exists at least one
symmetric solution.

As shown by Eq. �14�, the Gram matrices �n� have a very
special structure: the skew-diagonals are made up from iden-
tical elements. Such matrices, whether Gram or not, are
called Hankel matrices. For the symmetric Hamburger mo-
ment problem, the skew-diagonals corresponding to mo-
ments of odd order are zero. The importance of the positive
semidefiniteness of the matrices �n� can be understood in the
context of Theorem 3 of Ref. �17�, which is a standard con-
vergence theorem in probability theory. Namely, assuming
that we are given a collection of moment sequences
D0

�n� ,D1
�n� , . . . ,D2n

�n� �the low-rank terms of which are allowed

to change with n for generality� and letting ḠO
�n���� and

GO
�n��t� denote the associated spectral and correlation func-

tions, respectively, the convergence

lim
n→�

Dk
�n� = Dk, ∀ k � 0

implies

lim
n→�

GO
�n��t� = GO�t�, ∀ t � R .

This result appears to contradict our previous assertion that
the moment problem lacks continuity with the input data. To
the contrary, the theorem provides a means of approximating
the exact correlation function. The explanation is that Theo-
rem 3 requires the input data D0

�n� ,D1
�n� , . . . ,D2n

�n� to form finite
moment sequences and it is this requirement that lacks con-
tinuity with the input data. More exactly, for any ��0, there
exist a rank n and numbers D0

�n� ,D1
�n� , . . . ,D2n

�n� such that
�Dk

�n�−Dk����Dk�, ∀0�k�2n, yet the new data are not a
moment sequence �their Gram matrix is not positive
semidefinite�. Let us consider a particular case where �
=0.01. Thus, we know all the moments with 1% relative
accuracy. Is this enough to be able to generate a good ap-
proximation to the correlation function? The answer is no. As
the results in the remainder of the present section show, it is
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very likely that the data we possess do not form a moment
sequence, even for moderately large n.

For our symmetric problem, the moments of odd order are
zero and, therefore, their value is exactly known. In agree-
ment with the hypothesis of Theorem 3, we require of any
computational procedure to be able to provide the even-order
moments with controlled relative error. By making this rela-
tive error small, we may assume that the even-order mo-
ments are positive. According to the discussion in the pre-
ceding paragraph, for the reconstruction algorithm to
converge to the exact result in the limit that the relative error
for the even-order moments converges to zero, it is sufficient
that the inequalities

� �
j,k=0

n

ajDj+kak����
j=0

n

D2jaj
2� � 0 �15�

are satisfied for all numbers a0 ,a1 , . . . ,an. By the positivity
of the quantities D2j, this condition is, of course, equivalent
to the one provided by Eq. �13�. However, it also takes into
account the fact that the relative errors of the moments D2i

are controlled. By making the substitution aj =aj� /�D2j in Eq.
�15�, we see that the above inequality is equivalent to the
condition that the Hermitian matrices �n of entries

��n� j,k = Dj+k/�D2jD2k, 0 � j,k � n

are positive semidefinite. We summarize the findings ob-
tained so far in the present section in the following theorem,
which gives sufficient criteria for the existence of well-posed
inversion algorithms.

Theorem 1 For each n�1, let D0
�n� ,D2

�n� , . . . ,D2n
�n� be a

finite sequence of positive moment data. Let Dk
�n�=0, for k

=1,3 , . . . ,2n−1, and assume that the Hermitian matrices �n
of entries

��n� j,k = Dj+k
�n� /�D2j

�n�D2k
�n��1/2, 0 � j,k � n �16�

are positive semidefinite. Then there exists at least one sym-

metric trial spectral function ḠO
�n���� of even moments

D0
�n� ,D2

�n� , . . . ,D2n
�n�. Moreover, with GO

�n��t� denoting the asso-
ciated trial autocorrelation function, the convergence

lim
n→�

Dk
�n� = Dk, ∀ k � 0 �17�

implies

lim
n→�

GO
�n��t� = GO�t�, ∀ t � R . �18�

The upper index �n�, which was needed in the formulation of
the theorem, will be dropped from now on. We shall use the
notation D2k for the moment data and understand that they
are subject to both systematic and statistical errors.

In view of the above theorem, it is quite unfortunate that
the matrices �n are ill-conditioned �although they are better
behaved than the matrices �n��. In a research born out of
frustration with the numerical instabilities of an otherwise
reasonable algorithm, Tyrtyshnikov �27� has demonstrated
that the condition number �the ratio between the largest and

the smallest eigenvalues� of any positive semidefinite Hankel
matrix grows at least exponentially. As adapted to our prob-
lem, Tyrtyshnikov’s result states that

���n�� � 3 · 2n−5. �19�

A tighter bound has been given more recently by Becker-
mann �28�, who has demonstrated that

���n�� � �0
n−1/�16n� , �20�

for n�3. The quantity �0�3.210 is related to the so-called
Catalan series, but the exact value is not important for our
purposes. Nevertheless, Beckermann has demonstrated that
this is the best estimate for the minimal value of the expo-
nential factor �0. Thus, there are positive semidefinite Han-
kel matrices for which the exponential growth is exactly �0

n.
For most other applications, the exponential factor

� = lim
n→�

����n���
1/n �21�

is larger than �0�3.210 and may itself increase to infinity.
Although the matrices defined by Eq. �16� are not Hankel,

the extreme ill-conditioning of the matrices �n� carries over
to the matrices �n. A simple example will convince the
reader of this. Consider the following spectral function
�23,29�:

ḠF��� =
1

�h

�����

2�
K1� �����

2
� , �22�

where K1�x� denotes the respective modified Bessel function
of the second kind. This is the spectral function associated
with the thermally symmetrized flux-flux correlation func-
tion �the so-called Miller, Schwartz, and Tromp correlation
function �23�, or MST for short� for a free particle

GF�t� =
1

�h

���/2�2

�t2 + ���/2�2�3/2 . �23�

Formal differentiation of the correlation function at the ori-
gin shows that the even-order moments of the MST spectral
function for a free particle are given by the equation

D2k =
1

�

2k + 1

����2k+2

�2k�!2

k!2 . �24�

Using the above formula, one can set up the Hermitian ma-
trices �n, diagonalize them, and compute their condition
number ���n�. As apparent from Fig. 1, the quantity ���n�1/n

converges to a constant, the estimated value of which is �
�2.3. This implies that the sequence of matrices �n is expo-
nentially unstable. As Eq. �4� with �=0 suggests, the tail of
the spectral function decays like e−���/2 �as exponential or-
der� for all thermally symmetrized spectral functions. Be-
cause the relative values of the high-order moments depend
only on the properties of the tail of the spectral function, we
suggest that the asymptotic value of ��2.3 may be charac-
teristic of all spectral functions. The results computed for the
symmetric Eckart barrier �they are presented in Fig. 2� seem
to support the suggestion.

Why is the exponential instability of the matrices �n so
important? It shows that, just by controlling the relative er-
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rors of the even-order moments �that is, just by controlling
the relative errors of the entries of the matrices �n�, it is very
likely that we cannot ensure the positive semidefiniteness of
the matrices �n, even for moderately large n. As it is well
known, the condition number of a matrix controls the rela-
tive errors in the values of the determinants ��n� with respect
to the relative errors in the entries of the matrix. Roughly
speaking, log10(���n�) represents the number of exact digits
with which the entries of the matrix �n must be known in

order to guarantee that the determinant ��n� is still positive.
Therefore, the positive semidefiniteness of the matrices �n
must be a “built in” feature of the computational procedure.

IV. MOMENT ESTIMATING FUNCTIONALS

As discussed in Ref. �17�, the moments can be computed
by Monte Carlo integration as averages of some estimating
functionals. A typical average is expressed by the equation

Dk

NF
=

1

NF
� dk

dtkGF�it��
t=0

=

�
S

dx dz EE�e−�z�2
e−��/2���0

1V�x+�0zu+�0Bu
0�du+�0

1V�x+�0zu+�0Bu
0��du� dk

dtkFt��x,z,B�
0,B�

0���t=0

�
S

dx dz EE�e−�z�2
e−��/2���0

1V�x+�0zu+�0Bu
0�du+�0

1V�x+�0zu+�0Bu
0��du�

. �25�

The significance of the various terms can be found in the
cited reference and will be partially explained below. None-
theless, Eq. �25� is sufficient to point out one of the main
numerical difficulties of the present approach: due to the ex-
treme complexity of the estimating functional

Ft�x ,z ,B�
0 ,B�

0��, the differentiation against the parameter t
cannot be done analytically. As already mentioned in the
Introduction, the differentiation can be performed by finite
difference. Such an approach, however, requires high preci-
sion evaluation of the potential function entering the expres-
sion of the estimating functional.

In the mathematical literature, it is well known that a
superior technique for performing numerical differentiation
is provided by the so-called pseudospectral methods. The

functional Ft�x ,z ,B�
0 ,B�

0�� is infinitely differentiable on the
interval t� �−�� /2 ,�� /2� provided that the potential func-
tion is also infinitely differentiable. The functional can be
approximated on some compact interval �−��� /2 ,��� /2�,
0
�
1, by the Chebyshev polynomial interpolation �or,
following certain transformations, one can also perform a
trigonometric interpolation�. The resulting Chebyshev poly-

nomial can then be differentiated analytically. It can be dem-
onstrated that, when differentiating such an interpolating
polynomial, the error committed decays to zero exponen-
tially fast for functionals that are analytical in t �that is, for
analytical potentials� and faster than any polynomial for in-
finitely differentiable functionals �potentials�. This should be
compared with the polynomial decay obtained by finite dif-
ference. A short exposition of these results and some elegant
proofs can be found in Ref. �30�.

The choice of the parameter � is crucial in obtaining ac-
curate estimates of the derivatives. If � is too small, then the
input information represented by the values of the estimating
functional Ft�x ,z ,B�

0 ,B�
0�� for the Chebyshev knots in the

interval �−��� /2 ,��� /2� are highly redundant and the nec-
essary precision is very high. Therefore, the parameter �
should be chosen large, as close as possible to the value 1
�say �= 3

4 �. Even so, the number of Chebyshev coefficients
that are accurately computed is not very great and depends
on the precision of the machine. As a rule of thumb, one can
rely upon 8 to 16 coefficients in single precision and 16 to 32
coefficients in double precision. As recommended in Nu-
merical Recipes �31�, a technique that improves the quality

FIG. 1. Asymptotic behavior of the quantities ���n�1/n for the
flux-flux spectral function of a free particle. The asymptotic behav-
ior demonstrates the exponential instability of the matrices �n. The
condition number of the stability matrices increases roughly as 2 .3n

for large n.

FIG. 2. Asymptotic behavior of the quantities ���n�1/n for the
flux-flux spectral function of the Eckart barrier. As for the free
particle case, we notice that the matrices �n become exponentially
unstable. The condition number of the stability matrices increases
roughly as 2.3n for large n.
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of the polynomial interpolation is to truncate a higher-order
interpolating polynomial to a lesser degree. We shall refer to
such an interpolation polynomial as a regressed polynomial.

Given the limitation due to the finite precision with which
the potential can be evaluated, the pseudospectral technique
may fail to provide adequate estimates for the derivatives if
the estimating functional and its derivatives are not easily
approximated by a low-degree interpolant. Unfortunately,
this is the case for the present computational task. The culprit
is the Boltzmann factor that enters the definition of the esti-
mating functional. To understand how this factor enters our
equations, we review the definition of the flux-flux estimat-
ing functional �17�. The surface through which the flux is
computed is assumed to be a plane of equation x1=0. Thus,
the space S appearing in Eq. �25� is the subspace of Rd

	Rd of equation x1=0 and z1=0. The quantities Bu
0 and Bu

0�

are independent d-dimensional standard Brownian bridges
�d-dimensional vector valued stochastic processes, the com-
ponents of which are independent one-dimensional standard
Brownian bridges�. We also define the entities �t, �t, and �±t
as �t=� /2+ t /�, �t= ��2�t /m0�1/2, and �±t=�t�−t /�0, re-
spectively. Finally, we let V�x�, V��x�, and V��x� represent
the potential and its first- and second-order partial deriva-
tives against the reaction coordinate x1.

The following notation, additional to what has been intro-
duced in Ref. �17�, defines several actionlike variables which
will constitute the basic entities that we interpolate:

St�x,z,B*
0� = �t�

0

1

V�x + �±tzu + �tBu
0�du , �26�

St�
,a�x,z,B*

0� = �t�
0

1

V��x + �±tzu + �tBu
0�udu , �27�

St�
,b�x,z,B*

0� = �t�
0

1

V��x + �±tzu + �tBu
0��1 − u�du ,

�28�

and

St��x,z,B*
0� = �t�

0

1

V��x + �±tzu + �tBu
0�u�1 − u�du .

�29�

In terms of the actionlike variables, we define

Ft
0�x,z,B�

0,B�
0�� =

1

�−t
2 +

1

�t
2 + �St�

,a�x,z,B*
0�� − S−t�

,a�x,z,B*
0��

	 �St�
,b�x,z,B*

0�� − S−t�
,b�x,z,B*

0��

− St��x,z,B*
0�� − S−t� �x,z,B*

0� �30�

and

�t�x,z,B�
0� =

2

�
�S0�x,z,B*

0� − St�x,z,B*
0�� . �31�

Then, as shown in Ref. �17�,

Ft�x,z,B�
0,B�

0�� =
1

2��−t�t

�F−t
0 �x,z,B�

0,B�
0��

	 e��/2���t�x,z,B�
0�+�−t�x,z,B�

0���

+ Ft
0�x,z,B�

0,B�
0��

	 e��/2���−t�x,z,B�
0�+�t�x,z,B�

0���
 . �32�

The weighting factors of the type

e��/2���t�x,z,B�
0�+�−t�x,z,B�

0���

may vary quite violently for low enough temperatures and
cannot be readily approximated with a low-degree interpo-
lant even for smooth potentials. On the other hand, the ac-
tionlike quantities do not vary violently with t even for low
temperatures. The extent to which they vary is controlled by
the values of the potential or its derivatives �the smoothness
of these functions is assumed�. It is, of course, these quanti-
ties that we intend to approximate by pseudospectral meth-
ods.

For this purpose and in order to take advantage of the
whole array of values t� �−�� /2 ,�� /2�, we make the sub-
stitution

�1

2
+

t

��
= sin
�

4
�1 + ��� �33�

and regard the actionlike entities as functions of � on the
interval �−1,1�. With the notation �= ��2� /m0�1/2, the
equalities

�t = � sin
�

4
�1 + ���2

,

�t = � sin
�

4
�1 + ��� ,

�±t =
1

2
� sin
�

2
�1 + ��� , �34�

show, for example, that the action St can be regarded as the
function of � given by the formula

S̃��x,z,B*
0� = � sin
�

4
�1 + ���2�

0

1

V�x +
1

2
�zu

	sin
�

2
�1 + ��� + �Bu

0 sin
�

4
�1 + ����du .

This function is infinitely differentiable on the interval
�−1,1� whenever the potential is so. Therefore, the actionlike
functionals can be Chebyshev approximated on this interval
faster than any polynomial. An alternative interpolation pro-
cedure utilizes trigonometric polynomials and is based on the
observation that the actionlike variables are periodical in �.
Unfortunately, the period is 8 and the functionals must be
sampled on the larger interval �� �−4,4�, which is more
costly, because one needs roughly four times more points.
Although the trigonometric �Fourier� interpolation has the
nice property that it becomes exact for potentials that are
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polynomials, we did not notice any significant advantage
over the Chebyshev interpolation in more realistic numerical
tests �the two techniques behave in a similar fashion for
comparable meshes of the interpolatory knots�.

For some order of approximation n, let �k=cos(��k
−0.5� /n), k=1,2 , . . . ,n, be the nodes of the Chebyshev poly-
nomial Tn�x�. For j=0,1 , . . . ,n−1, the Chebyshev coeffi-
cients are given by

cj�x,z,B*
0� =

2

n
�
k=1

n

S̃�k
�x,z,B*

0�cos
�j�k − 0.5�
n

� , �35�

and we have the following approximation formula:

S̃��x,z,B*
0� �

1

2
c0�x,z,B*

0� + �
k=1

n−1

ck�x,z,B*
0�Tk��� . �36�

The right-hand side expression in Eq. �36� is called the
Chebyshev interpolation polynomial of rank n−1. This poly-
nomial is the unique polynomial of rank n−1 that coincides

with S̃��x ,z ,B*
0� for all n interpolatory knots �k.

Of course, interpolation polynomials must be computed
for all actionlike functionals described by Eqs. �26�–�29�.
The computation of the Chebyshev coefficients can be per-
formed in a fast and stable way by cosine fast Fourier trans-
form �FFT� �31�. We recommend the use of such a transform
not so much for reasons of computational efficiency as for
reasons of accuracy. If � is the floating-point relative preci-
sion of the machine, the relative error for the Cooley-Tukey
FFT algorithm is O(� log10�n�), compared to O��n3/2� for the
direct matrix multiplication technique �32�. The numerical
evaluation of the actionlike functionals from their Chebyshev
coefficients is to be performed by the Clenshaw recurrence
formula, which is documented in Numerical Recipes �31�.

Replacing the actionlike functionals with their Chebyshev
approximation in Eqs. �30�–�32�, we obtain a nonlinear ap-

proximation F̃��x ,z ,B�
0 ,B�

0�� of the estimating functional in
terms of the variable �. In terms of the variable t, one has

Ft�x,z,B�
0,B�

0�� � F̃��t��x,z,B�
0,B�

0�� , �37�

where

��t� = − 1 +
4

�
arcsin��1

2
+

t

��
�

= − 1 −
4i

�
ln��1

2
−

t

��
+ i�1

2
+

t

��
� �38�

is, of course, the appropriate solution of Eq. �33�. Equation
�38�, which involves the use of complex numbers, already
betrays the approach we shall utilize to compute the deriva-
tives of the estimating function at the origin: contour integra-
tion of the complex extension of the nonlinear Chebyshev
approximation. The numerical algorithm utilized is due to
Lyness �33� and is summarized in the following paragraph.

The Cauchy integral formula

� dk

dtkFt�x,z,B�
0,B�

0���
t=0

=
k!

2�i
�

C

1

tk+1Ft�x,z,B�
0,B�

0��dt

�39�

provides a way to compute the derivatives of an analytical
function by computing integrals. The contour C must be a
closed curve that contains the origin in its interior. It will be
taken to be a circle of radius r� �0,�� /2� centered about the
origin. Equation �39� becomes

k!

rk�
0

1

e−2�ik�Fre2�i��x,z,B�
0,B�

0��d� �40�

and shows that the problem of computing derivatives is
equivalent with that of evaluating the Fourier coefficients of
a periodic function. The one-dimensional integral in Eq. �40�
is to be computed by trapezoidal quadrature. We have the
approximation

� dk

dtkFt�x,z,B�
0,B�

0���
t=0

�
k!

rk

1

m�
j=1

m

e−2�ikj/mFre2�ij/m�x,z,B�
0,B�

0�� , �41�

where the summation is best executed by FFT. Lyness �33�
has demonstrated that this simple-looking algorithm is nu-
merically stable and converges exponentially fast with re-
spect to the number of quadrature knots m. For this reason,
the algorithm is known as Lyness’ method. Although criteria
for choosing optimal values for the radius r are known, nu-
merical tests show that the ad hoc value of r=�� /4 produces
excellent results.

We conclude the present section by pointing out an issue
of convergence and precision. Unless the potential function
is analytical, one cannot extend the estimating functional

Ft�x ,z ,B�
0 ,B�

0�� to the entire complex plane. Thus, the non-
linear Chebyshev approximation, although convergent on the
real interval �−�� /2 ,�� /2�, diverges on the complex disk of
radius �� /2, as the rank n of the interpolating polynomial
goes to infinity. We take advantage of the rapid convergence
and the stability of Lyness’ method to compensate for this
divergence. However, to also compensate for the loss in pre-
cision in the evaluation of the integrand, one may need to
evaluate the Chebyshev polynomials as well as the final non-
linear approximation in higher precision. Numerical tests
show that this divergence is very weak and that the need for
higher precision seems only theoretical. With the increase in
the rank of the Chebyshev approximation beyond a certain
level, we do notice a sudden divergence, but this is caused by
the limited precision with which the high-order coefficients
are determined and appears even for analytical potentials.
The convergence of the Chebyshev approximation is nor-
mally so fast that it rapidly feels the lack of smoothness of
the action due to the finite precision of the machine. Thus,
the high-order coefficients, instead of decaying steadily to
zero, remain roughly constant as magnitude. One counteracts
this artifact by truncating the Chebyshev series to a safe
number of coefficients �usually less than 16 in single preci-
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sion and less than 32 in double precision�. The sudden diver-
gence can easily be spotted by comparing the values of D0
computed with two slightly different estimators: the first one

utilizes the estimating functional F0�x ,z ,B�
0 ,B�

0�� �more pre-
cisely, to account for the case when the polynomials are re-
gressed, the value at the origin of its nonlinear approxima-
tion in terms of Chebyshev polynomials�, whereas the
second one utilizes the Cauchy contour integral

1

m
�
j=1

m

Fre2�ij/m�x,z,B�
0,B�

0�� .

The agreement for the computed values of D0 must be better
than the minimal accuracy that would guarantee the positive
semidefiniteness of the stability matrices.

V. A NUMERICAL EXAMPLE: THE SYMMETRIC
ECKART BARRIER

In order to demonstrate the capabilities of the present
technique, we compute the first 20 even-order moments of
the flux-flux spectral function for a symmetric Eckart barrier
at the low temperature of T=100 K. The parameters for the
Eckart barrier are those also utilized in Ref. �17�. The poten-
tial is

V�x� = V0 sech�ax�2, �42�

with V0=0.425 eV, a=1.36 a.u., and m0=1060 a.u.. The pa-
rameters for the barrier are chosen to correspond approxi-
mately to the H+H2 reaction. As discussed in Sec. III, the
necessary and sufficient criteria that guarantee the existence
of a convergent reconstruction algorithm are �a� positivity
and control of the relative errors for the moments and �b�
positive semidefiniteness of the matrices �n.

Let us summarily describe the main features of the Monte
Carlo path-integral technique utilized. According to Eq. �25�,
what we actually compute are the ratios D2k /NF, where

NF =
1

8�m0
� 1

2��0
�d−1�

S
dx dz EE�e−�z�2

	e−��/2���0
1V�x+�0zu+�0Bu

0�du+�0
1V�x+�0zu+�0Bu

0��du�. �43�

Although the normalization coefficient NF can also be deter-
mined by the Monte Carlo integration, its value is irrelevant
for the present study. The path-integral technique utilized is
based on the fourth-order short-time approximation intro-
duced in Ref. �34�. A Trotter index of 16 has been employed,
for a total of 64 path variables. In order to diminish the
amount of correlation in the Monte Carlo chain, we have
utilized the so-called fast sampling algorithm considered in
Ref. �35� as well as the parallel tempering technique. The
parallel tempering exchanges have been performed with rep-
licas of temperatures arranged in geometric progression up to
5000 K. A total of 10 million complete sweeps through the
space of path variables have been made. These sweeps have
been divided in 100 blocks.

Naturally, the Monte Carlo simulation consists of two
parts: sampling and accumulation of averages for the esti-

mating functionals. Due to the nature of the fast sampling
algorithm, which organizes the path variables in 2
+log2�64�=8 layers with the variables from the same layer
sampled separately �and independently�, the computational
cost for a sweep is 64	8 calls to the potential function. The
computational cost for the estimating functionals is 64	3
	32 calls. The factor 3 comes from the three different types
of functions that are called �V�x�, V��x�, and V��x�� whereas
the factor 32 represents the number of Chebyshev knots. We
mention that even for such a simple analytical potential, the
largest part of the computation is spent on the evaluation of
the potential and its derivatives and not on performing the
numerical manipulations considered in the preceding section.
In order to dedicate comparable amounts of time to the sam-
pling and estimator evaluation parts, we have evaluated the
estimators every 3	32/8=12 sweeps. We made this analy-
sis just in order to warn the reader about the magnitude of
the computational cost incurred by the evaluation of the es-
timating functionals for derivatives. Thus, it is not worth to
accumulate averages after each sweep, especially given the
usually large correlation of the Monte Carlo sampler �it is
very rare that the correlation times are smaller than 12 in
realistic simulations�.

As mentioned before, the main purpose of the present
development is to provide a technique that is capable of pro-
ducing accurate estimates for the high-order derivatives
without the need to evaluate the potential function in arbi-
trary precision. Therefore, the potential function and its de-
rivatives utilized in the construction of the estimating func-
tionals have been evaluated in single precision �about 7
significant decimal digits� only. This is also the precision
with which the Chebyshev coefficients are evaluated. On the
other hand, the evaluation of the Chebyshev polynomials, the
contour integration in the complex plane, and the accumula-
tion of averages have been performed in quadruple precision
�about 31 significant decimal digits�. The sampling part of
the simulation has been conducted in double precision �about
15 significant decimal digits�. To complete the description of
the algorithm, we mention that the Chebyshev polynomials
have been regressed to the first 16 coefficients and the con-
tour integration has been performed in 64 quadrature knots.

We accumulate the averages in quadruple precision in an-
ticipation of the loss of precision due to the exponential in-
stability of the matrices �n. We stress that, although the mo-
ments D2k are determined with a precision of a few digits
only, an important amount of information resides in the re-
maining imprecise digits. To understand how this may hap-
pen, let us analyze the problem of computing the moments if
the spectral function is analytically known and can itself be
sampled. Thus, we compute averages of the type

�k = Dk/D0 = �
R

ḠF����kd���
R

ḠF���d� �44�

for k=0,1 , . . ., by Monte Carlo integration. The actual ratios
in N sample points are

�k
�N� =

1

N
�
j=1

N

� j
k = �

R
�N����kd� , �45�

where
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�N��� =
1

N
�
j=1

N

��� − � j� �46�

is some discrete measure that depends upon the history of the
Monte Carlo integration. We notice that irrespective of what
this discrete measure is, the sequence of numbers ��k

�N�; k
=0,1 , . . .
 is a moment sequence because it comes from some
positive measure. It therefore satisfies the requirements of
positive semidefiniteness of the stability matrices �n regard-
less of the actual number of samples N. It also exhibits the
same instability issues as the original problem. Theoretically,
if we determine the whole sequence of moments ��k

�N�; k
=0,1 , . . .
 for some fixed N with arbitrary precision, we can
reconstruct the measure that has generated the sequence, that
is, the distribution �N���. But if these statistically inexact
moments are not known with sufficient precision, the expo-
nential instability will cause them to lose the crucial property
that they form a moment sequence.

The lesson we learn from the preceding exposition is that
we cannot compute moments of different orders in indepen-
dent Monte Carlo runs, because it is difficult to attain the
precision necessary to ensure the positive semidefiniteness of
the stability matrices �n. In this paper, we declare ourselves
content with the simultaneous computation of the moments
in the same Monte Carlo simulation. We mention, however,
that this is not necessarily without penalty. If, for example,
one is interested in evaluating the tail of the spectral function
�which decays like e−���/2, as Eq. �4� with �=0 suggests�,
then there are going to be problems related to the fact that
the tail of the distribution is infrequently sampled by the
Monte Carlo walker because of its exponentially vanishing
statistical weight. Accordingly, the information contained in
the moments determined by Monte Carlo integration poorly
reproduces the properties of the tail. Thus, our assumption is
that we are interested in the properties of the spectral func-
tion near the origin or in regions of important statistical
weight.

Under this assumption, the poor statistics for the compu-
tation of high order moments mentioned in the preceding
paragraph is harmless. It also serves to show that the rela-
tionship between the quality of the reconstructed spectral
functions and the relative errors of the moments is far from
being a linear one. However, we do need to worry about the
fact that the estimating functionals for the high-order deriva-
tives appearing in Eq. �25� are generally not positive quanti-
ties. As such, there is the real possibility that, due to large
cancellations between the positive and negative parts, the
computed sequence D0 ,D1 ,D2 , . . . may not be a moment se-
quence. In fact, taking into account the exponential instabil-
ity of the matrices �n, one needs to worry about the limita-
tions caused by the utilization of a finite Trotter index as well
as about the inherent numerical limitations of the pseu-
dospectral methods utilized. All these systematic errors are
additional to the statistical errors. It appears then quite sur-
prising that the present approach is extremely capable in this
respect. The reader may use the results in Table I to verify
that the stability matrix �20 is, indeed, positive definite �due
to their structure, the stability matrices �n for n
=1,2 , . . . ,19 are also positive definite�. We mention that we
have verified the positive definiteness of the matrices �20 �by
performing a Cholesky decomposition �31�� not only for the
final data, but also for the individual averages collected for
each of the 100 blocks in which the Monte Carlo simulation
has been divided! Why the algorithm is so capable in dealing
with the sign problem is something that the author cannot
explain at the present time.

As demonstrated by the results in Table I, the relative
statistical errors increase quickly with the order of the mo-
ments and reach a plateau at about 0.25–0.26. This behavior
seems to be caused by poor statistics, in a way that is perhaps
similar with the previously discussed case, where the spectral
function is sampled directly. We have noticed that, for k
�6, the block averages fail to become independent and the
Monte Carlo correlation times are comparable to the length
of the simulation. It is therefore of certain interest to design

TABLE I. Moments of even order and their percent relative statistical errors determined by Monte Carlo integration. A number of
log10����20���8 significant figures are necessary in order to prevent the loss of the positive semidefiniteness property of the stability
matrices. We give the results with one significant digit more than the minimal requirement so that the reader may verify that the matrix �20

is positive definite.

k 0 1 2 3 4 5 6

D2k /NF 5.43598845
	101

2.25127499
	10−4

3.79457212
	10−9

1.31959326
	10−13

7.49921061
	10−18

6.09205035
	10−22

6.48529540
	10−26

Error 0.5% 0.7% 1.2% 2.4% 4.3% 6.7% 9.5%

k 7 8 9 10 11 12 13

D2k /NF 8.53623493
	10−30

1.33546663
	10−33

2.41660791
	10−37

4.96421869
	10−41

1.14347963
	10−44

2.93267228
	10−48

8.35072926
	10−52

Error 12.6% 15.7% 18.8% 21.5% 23.7% 25.2% 26.0%

k 14 15 16 17 18 19 20

D2k /NF 2.64105405
	10−55

9.29940331
	10−59

3.65639217
	10−62

1.60895318
	10−65

7.92788909
	10−69

4.36750842
	10−72

2.68123444
	10−75

Error 26.2% 25.9% 25.4% 24.1% 24.3% 23.8% 23.5%
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alternative sampling techniques that would improve the sta-
tistics by use of suitable importance functions. However, the
techniques should preserve the property of positive semidefi-
niteness of the stability matrices. Such a task appears formi-
dable because the condition numbers of the stability matrices
increase exponentially, according to the law 2.3n. This expo-
nential instability is apparent from Fig. 2.

VI. SUMMARY AND CONCLUSIONS

We have provided an in-depth analysis of the problem of
constructing estimators for the purpose of computing mo-
ments of spectral functions by path-integral simulations. The
estimators are constructed by formal differentiation of a cer-
tain estimating functional against the imaginary time. We
have argued that the numerical differentiation can be more
successfully implemented by means of pseudospectral meth-
ods, in a way that utilizes information from the entire inter-
val �−�� /2 ,�� /2�. The algorithmic detail that leads to ro-
bust numerical approximations is the fact that the actionlike
functionals and not the actual estimating functional are inter-
polated. The derivatives at the origin can be computed from
the ensuing nonlinear approximation in a fast and stable way
by contour integration in the complex plane, with the help of
Lyness’ method.

We have improved upon the convergence results of Ref.
�17� by stating Theorem 1, which provides the necessary and
sufficient conditions for the existence of convergent recon-
struction algorithms. The hypothesis of the new theorem is
now based on assertions that are verifiable solely from the
computed data. In particular, we have pointed out that the
existence of inverse algorithms is inherently related to the
positive semidefiniteness of certain matrices, which, how-
ever, prove to be exponentially unstable. Although the main
statements that lead to Theorem 1 are well-known results
from the mathematical literature, we believe it is worth hav-
ing them systematized in a single statement, for the benefit of
the readers.

One of the main assumptions made throughout the present
work is that the potential function is infinitely differentiable.
This assumption is not necessarily a limitation if one takes
into account the existence of the partial averaging technique

�36�, which replaces the actionlike variables by smooth ver-
sions obtained by convolution with Gaussians of certain
widths. Such convolutions are, of course, differentiable infi-
nitely many times �37�. For most practical applications, the
value of the Gaussian width remains orders of magnitude
larger than the resolution capabilities of the working preci-
sion. In other words, the interpolation technique utilized still
“sees” a smooth functional even for the largest numbers of
path variables that make the approximation convergent for
all practical purposes. For these reasons, the partial averag-
ing technique can be thought of as the natural setting for the
implementation of the present approach.

Several questions related to the moment approach remain
to be answered. The first one asks for an explanation of why
the pseudospectral technique utilized leads to estimators that,
upon largely inaccurate Monte Carlo integration, still pro-
duce a sequence of moments. By “largely inaccurate,” we
mean that the statistical errors are orders of magnitude larger
than the working precision required by the observed expo-
nential instability of the matrices �n. Even the systematic
errors introduced by the Chebyshev approximation are sig-
nificantly larger than the required precision. A second ques-
tion asks why the sign problem that should have ruined the
Monte Carlo simulation is actually very mild. A third ques-
tion is related to the development of sampling techniques,
perhaps by means of suitable importance functions, that
would alleviate the poor statistics associated with the com-
putation of high-order moments, yet would preserve the posi-
tive semidefiniteness of the stability matrices. A final task
calls for the development of actual reconstruction techniques
of the spectral functions from their moments and for studies
of the suitability of the various techniques for specific prob-
lems.
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